The Journal of the American Chemical Society

with which has been incorporated The American Chemical Journal (Founded by Ira Remsen)

VOL. 46	MARCH, 1924	No. 3

THIRTIETH ANNUAL REPORT OF THE COMMITTEE ON ATOMIC WEIGHTS. DETERMINATIONS PUBLISHED DURING 1923

By Gregory Paul Baxter

RECEIVED JANUARY 31, 1924

The first report of the new International Committee on Elements¹ gives tables of isotopes, and of radioactive elements and their constants.

Reports of German,² and Spanish³ committees on atomic weights have been published.

Moles and Miravalles⁴ have investigated the compressibility of exhausted glass globes and find that the formula

Contraction per atmosphere = $17.5 \frac{\text{Volume in cc.}}{\text{Weight in g.}} \times 10^{-3} \text{ cc.}$

in general gives as reliable results as any experimental method.

Batuecas⁵ has extended the work of Guye and Batuecas on the compressibilities of gases and finds the following values.

	$(PV)_0/(PV)_1$	Density	At. wt.
Nitrous oxide	1.00739	1.9778	N = 14.002
Nitric oxide	1.00112	1.3402	N = 14.006
Methyl ether	1.02540	2.1096	C = 12.003

Boron.—Stock and Kuss⁶ weighed fractionated diborane (B_2H_6) in a glass globe and measured the volume of hydrogen evolved on hydrolysis.

¹ This Journal, 45, 867 (1923).

² Bodenstein, Hahn, Hönigschmid and Meyer, Z. angew. Chem., **36**, 221 (1923); Ber., **56A**, I-XXXIV (April, **1923**).

⁸ Cabrera, Mourelo, del Campo, Moles, Batuecas, Anales soc. españ. fís. quím., 21, 57 (1923).

⁴ Moles and Miravalles, Anales soc. españ. fís. quím., 20, 104 (1922).

⁵ Batuecas, *ibid.*, **20,** 441 (1922).

⁶ Stock and Kuss, (a) Ber., **56B**, 314 (1923); (b) Z. anorg. allgem. Chem., **128**, 49 (1923).

	Atomic Weig	HT OF BORON	
Wt, of B_2H_6	Wt. of H2	Ratio B2H6:6H2O	At, wt, B
0.109510	0.047865	2.28789	10.810
.105465	.046116	2.28695	10.804
.112181	.049054	2.28689	10.803
.104359	.045642	2.28647	10.802
.108708	.047514	2.28792	10.810
.110924	.048505	2.28686	10.804
	Av	2.28716	10.807

Baxter and Scott⁷ synthesized boron trichloride and boron tribromide from the elements, and fractionally distilled the halides in exhausted glass vessels until the products were free from silicon halides. Fractions of the halides were collected at various stages of the purification in sealed, exhausted glass bulbs. These were weighed, broken under ammonia and, after the glass had been determined, the solution was compared with silver. In some experiments the silver halide was collected and weighed. In the tables the fractions are numbered in the order of decreasing

In the tables the fractions are numbered in the order of decreasing volatility. Weights are corrected to vacuum. Cl = 35.458; Br = 79.916.

			Атоміс Wi BCl ₃				
Fra of E	ction SCla	Wt, of BCl₃ G.	Wt. of G		Ratio BCl3:3Ag	At.	wt. B
6	3	4.84825	13.39	9060	0.363063	10	.804
4	1	3.80944	10.5	1949	.362132	10	.826
8	3	5.67738	15.68	8073	.362060	10	.803
	5	5.28752	14.60	0378	.362065		.805
2	-	2.86895		2365	.362074	-	.808
		2.00000	1.02	Av.	.362079	_	.809
				лν.	.302019	10	,009
			BCl ₃ .	SAMPLE	II		
Fraction of BCla	Wt. of BCl₃ G.	Wt. of Ag G.	Ratio BCl₃:3Ag	At. wt. B	Wt. of AgCl G.	Ratio BCla:3AgCl	At. wt. B
25	6.63574	18.32385	0.362136	10.828			
1	6.36923	17.58466	.362204	10.850		.	
24	6.37226	17.59666	.362129	10.825		· · · · · · ·	
2	5.87852	16.23129	.362172	10.839	• • • • • • • •		. . .
3	3.73634	10.31798	.362119	10.822			
21	3.95311	10.91751	.362089	10.812	14.50552	,272525	10.816
4	3.53556	9.76236	.362162	10.836	12.97045	.272586	10.842
5	3.55078	9.80556	.362119	10.822	13.02621	.272587	10.842
19	3.45120	9.53188	.362069	10.806	12.66480	.272503	10.806
7	3.59682	9.93339	.362094	10.814	13.19789	.272530	10.818
9	4.33672	11.97678	.362094	10.814			
16	3.07091	8.48131	. 362080	10.810	11.26819	,272529	10.817
11	3.70594	10.23547	, 362068	10.806			
14	3.17865	8.77862	. 362090	10.813	11.66282	.272546	10.825
6	4.35457	12.02629	.362088	10.812			
18	4.10982	11.35029	,362089	10.812			
12	3.62520	10.01172	.362096	10.815			
		Av	. 362112	10.820		.272544	10.824

⁷ Baxter and Scott, Proc. Am. Acad. Arts Sci., 59, 21 (1923). See also Science, N. S., 54, 524 (1921).

			_	BBr3			
Fraction of BBr ₃	n Wt.of BBr₃ G.	Wt. of Ag G.	Ratio BBr₃:3Ag	At. wt. B	Wt. of AgBr G.	Ratio BBr₃:3AgBr	At. wt. B
24	11.94682	15.42731	(0.774394)	(10.877)		.	
22	16.70949	21.58273	.774207	10.816			
18	10.62202	13.71957	.774224	10.822			
20	5.72663	7.39671	.774213	10.818			
4	8.72710	11.27173	.774247	10.829			
3	8.01796	10.35513	.774298	10.846			
5	7.99444	10.32583	,774218	10.820	· · · · · · · · ·		
6	7.05884	9.11662	.774283	10.841			
15	10.56234	13.64271	.774211	10.818			'
14	7.92601	10.23726	.774232	10.824			
13	9.11150	11.76933	.774173	10.805			
8	10.45731	13.50655	.774240	10.827	23.51219	0.444761	10.825
9	9.20250	11.88559	.774257	10.833			• • • • • •
10	8.85374	11.43655	.774162	10.802	19.90883	.444714	10.799
11	4.75503	6.14211	.774169	10.804			
Av., c	mitting Fr	action 24	.774224	10.822		.444738	10.812

The average value, 10.82, is identical with that found by Hönigschmid and Birckenbach.

Sodium.—Moles and Clavera⁸ have converted sodium trinitride into sodium nitrate. Weights are corrected to a vacuum.

	-			
Wt. of NaN3	Wt. of NaNO3	Ratio NaNO3: NaN3		
0.31576	0.41281	1.30735	If $N = 14.005$	Na = 23.026
.20814	.27211	1.30734	14.006	23.017
.47658	.62307	1.30738	14.007	23.008
.20767	.27150	1.30733	14.008	22.998
.29891	.39077	1.30731	14.009	22.988
.30490	.39862	1.30738	14.010	22.978
.23004	.30074	1.30734		
.20916	.27344	1.30732		· · · •
.21966	.28717	1.30734		
.18391	.24043	1.30732		
.24672	.32256	1.30737	• • • •	
	А	v. 1.30734		

Silicon.—Baxter, Weatherill and Scripture⁹ synthesized silicon tetrachloride from the elements and purified the product by fractional distillation in exhausted vessels. Samples II and III were found to be contaminated with higher chlorides of silicon. Sample IV was more carefully distilled and apparently was sufficiently pure. The tetrabromide was prepared from pure bromine and silicon and also was subjected to elaborate purification by fractional distillation. Both substances were weighed in sealed, exhausted bulbs and, after decomposition with sodium hydroxide, were compared with silver. Fractions are numbered in the order of decreasing volatility. Weights are corrected to vacuum. Cl = 35.457; Br = 79.916.

⁸ Moles and Clavera, Anales soc. españ. fis. quím., 20, 550 (1922); Z. physik. Chem., 107, 423 (1923); (reported briefly in the 29th Report).

⁹ Baxter, Weatherill and Scripture, Proc. Am. Acad., 58, 246 (1923).

Atomic Weight of Silicon

	SAMPLE II					
Fraction	Wt. of SiCl ₄ G.	Wt. of Ag G.	Ratio SiCl4:4Ag	At. wt. Si		
7	5.68295	14.43153	0.393787	28.099		
13	5.01510	12.73571	.393783	28.097		
1	3.73771	9.49172	.393786	28.099		
20	7.58979	19.26875	(.393891)	(28.144)		
	Av.,	omitting Fraction	20 .393787	29.099		
		Sample III				
1	2.97268	7.54940	.393764	28.089		
21	2.49266	6.32800	(.393910)	(28.152)		
13	4.38690	11.14090	.393765	28.090		
16	4.23780	10.76595	.393630	28.031		
	Av.,	omitting Fraction	21 .393711	28.070		
		SAMPLE IV				
1	6.32161	16.05604	.393722	28.071		
10	2.50810	6.37059	.393700	28.061		
4	6.30110	16.00456	.393707	28.064		
8	7.02208	17.83534	.393717	28.069		
11	4.14551	10.52942	.393707	28.065		
12	6.43140	16.33552	.393707	28.064		
14	6.17527	15.68425	.393724	28.072		
6	6.56940	16.68571	.393714	28.068		
		Av.	.393712	28.067		
		$SIBr_4$				
Fraction	Wt. of SiBr ₄ G.	Wt. of Ag G.	Ratio SiBr₄:4Ag	At. wt. Si		
1	6.29408	7.81075	0.805823	28.064		
8	7.08409	8.79042	(.805888)	(28.093)		
2	8.75434	10.86387	.805821	28.064		
4	6.09639	7.56566	.805797	28.054		
5	5.89649	7.31754	.805802	28.056		
3	5.32962	6.61398	.805811	28.060		
7	5.87675	7.29313	.805792	28.052		
6	4.16665	5.17067	.805824	28.065		
		tting Fraction 8	.805810	28.059		
	Av	of Sample IV of	SiCl ₄ and SiBr ₄	28.063		

Stock and Kuss^{6a} by decomposition of fractionated silicon hydride and measurement of the hydrogen evolved find the three values 28.15, 28.16, 28.14.

Chlorine.—Dorenfeldt¹⁰ has compared chlorine found in Bamle apatite with that in ordinary sodium chloride by determining the specific gravities of saturated solutions of sodium chloride. Two sets of final values are given, corresponding to slight differences in temperature.

¹⁰ Dorenfeldt, This JOURNAL, **45**, 1577 (1923).

	DENSITIES OF SATURATED SALT	Solutions
	Ordinary	Apatite
Ι	1.202791	1.202791
II	1.202867	1.202855

Evaporation of the same volume of two corresponding solutions yielded 3.31262 and 3.31267 g. respectively of sodium chloride. This supports the evidence of earlier investigators that chlorine which has not been in the sea is identical with that which has.

Titanium.—Baxter and Fertig¹¹ fractionated commercial titanium tetrachloride in a vacuum. The product was found by spectroscopic tests to be free from silicon, vanadium and zirconium. The tetrachloride was collected for analysis and weighed in sealed, exhausted glass bulbs. These were broken under nitric acid and after the glass had been collected and weighed the solution was compared with silver in the usual way. The fractions of tetrachloride are numbered in the order of decreasing volatility. Weights are corrected to vacuum. Cl = 35.458.

	Ато	MIC WEIGHT OF T	ITANIUM	
Fraction of TiCl4	Wt. of TiCl ₄ G.	Wt. of Ag G.	Ratio TiCl4:4Ag	At. wt. Ti
6	5.3314	12.1259	0.43967	47.89
1	4.4803	10.1909	.43964	47.88
2	4.8304	10.9909	.43949	47.82
5	4.5808	10.4251	.43940	47.78
3	5.0843	11.5655	.43961	47.87
4	4.3018	9.7859	.43959	47.86
		Av.	.43957	47.85

The present International (1922) value is 48.1.

Iron.—Hönigschmid, Birckenbach and Zeiss¹² synthesized ferric chloride from the elements in quartz apparatus so constructed that the product could be resublimed into a quartz weighing tube without exposure to moist air. The product, which gave no test for ferrous chloride, was dissolved in 1.5% nitric acid at 0° and was immediately precipitated with a weighed equivalent amount of silver, and after standing for several days at 0° the end-point was found nephelometrically. Finally the silver chloride was collected and weighed. Weights are corrected to vacuum. Cl = 35.457.

Atomic Weight of Iron						
		Preli	MINARY SEF	RIES		
Wt. of FeCl ₃ G.	Wt. of Ag G,	Ratio FeCl₃:3Ag	At. wt. Fe	Wt. of AgCl G.	Ratio FeCl₃:3AgCl	At. wt. Fe
2.56636	5.11975	0.501267	55.859			
2.34933	4.68715	.501228	55.846			
1.03565				2.74519	.377260	55.855
1.67263	• • •			4.43559	.377263	55.856
1.68182				4.45818	.377244	55.848
	Av.	.501248	55.853		.377256	55.853

¹¹ Baxter and Fertig, THIS JOURNAL, 45, 1228 (1923).

¹² Hönigschmid, Birckenbach and Zeiss, Ber., 56B, 1473 (1923).

		F	'inal Serie	ts		
Wt. of FeCls G.	Wt. of Ag G.	Ratio FeCla:3Ag	At. wt. Fe	Wt. of AgCl G.	Ratio FeCls:3AgCl	At. wt. Fe
2.57785	5.14290	0.501244	55.852	6.83313	0.377258	55.854
1.23313	2.46017	.501238	55.870	3.26848	.377279	55.863
1.13715	2.26839	.501303	(55.871)	3.01404	.377284	(55.865)
1.34904	2.69146	.501230	55.847	3.37610	.377238	55.845
1.86946	3.27970	.501236	55.849	4.95513	.377278	55.863
2.08337	4.15642	.501241	55.850		•••	
2.67942	5.34559	.501239	55.850	7.10276	.377236	55.845
2.40666	4.80129	.501253	55.854	6.37929	.377261	55.856
3.25209	6,48850	.501208	(55.840)	8.62125	.377102	(55.837)
1.35432	2.70190	.501247	55.853	3.58996	.377252	55.852
3.71092	7.40326	.501255	55.855	9.83634	.377266	55.858
3.73866	7.45862	.501254	55.855	9.91005	.377259	55.855
4.07234	8,12422	.501259	55.857	10.79471	.377253	55.852
	Av.	.501245	55.852		.377258	55.854

The average value, 55.853, is 0.01 unit higher than the present International (1922) value which rests on the value found by Baxter and Hoover, 55.847, by reduction of ferric oxide, and the analysis of ferrous bromide by Baxter, Thorvaldson and Cobb who obtained 55.838.

Nickel.—Baxter and Hilton¹⁸ have recompared terrestrial and meteoric nickel by analysis of the chloride. After careful purification the chloride was slowly dehydrated in a stream of dry hydrogen chloride in a quartz tube and was several times sublimed until free from silica. The sublimed material was further heated nearly to the sublimation point in dry hydrogen chloride before being weighed. Solution and comparison with silver followed, and the silver chloride was collected and weighed in several experiments. Weights are corrected to vacuum. Cl = 35.458.

At. wt. .gCl Ni
• • • •
••••
• • • •
58.692
30 58.699
$18 \ 58.696$
66 58.709
56 58.706
05 58.692
• • • •
42 58.702
33 58.700

As in a previous investigation by Baxter and Parsons with material from the same sources, terrestrial and meteoric nickel are found to be ¹³ Baxter and Hilton, THIS JOURNAL, **45**, 694 (1923).

identical. The atomic weight of nickel determined is nearer the value recently obtained by Baxter and Parsons, 58.702, than that found earlier by Richards and Cushman, 58.682.

Bromine.—Hönigschmid and Zintl¹⁴ have compared bromine and silver and have made complete syntheses of silver bromide. Carefully purified dry bromine was distilled in an exhausted glass system into glass bulbs which were sealed while evacuated. After being weighed, the bulbs were broken under ammoniacal ammonium arsenite and the glass fragments were collected and weighed. The solution was compared with the purest silver, and after the exact end-point had been found a slight excess of silver nitrate was added and the silver bromide was collected and weighed. Several analyses of potassium bromide with and without the addition of arsenite showed that the latter substance had no effect on the result. Weights are corrected to vacuum. Ag = 107.880.

Atomic Weight of Bromine

Wt. of Br G.	Wt. of Ag G.	Ratio Br:Ag	At, wt. Br	Wt. of AgBr G.	Ratio Br:AgBr	At, wt. Br	Wt. of Ag + wt. of Br- wt. of AgBr G.
2.85107	3.84869	0.740790	79.916		· · · · · · ·		
3,58674	4.84186	.740777	79.915	8.42862	0.425543	79.915	-0.00002
3.14241	4.24203	.740780	79.915	7.38447	.425543	79,915	00003
2.20924	2.98220	.740809	79.918	5.19147	.425552	79.918	- ,00003
4.20716	5.67931	.740787	79.916	9.88640	.425550	78.917	+ .00007
4.50795	6.08542	.740779	79.915	10.59330	.425547	79.916	+ .00007
4.16666	5.62468	.740782	79.916	9.79138	.425544	79.915	00004
1.68886	2.27984	.740780	79.915	3.96868	.425547	79.916	+ .00002
4.47534	6.04125	.740797	79.917	10.51660	.425550	79.917	00001
2.28987	3.09116	.740780	79.915	<i></i> .			
	Av.	.740786	79.916		.425547	79,916	+ .000004

The average value for the atomic weight of bromine is identical with that found by Baxter by synthesis of silver bromide from weighed amounts of silver, and by comparison of silver bromide and silver chloride.

Furthermore, the striking agreement between the weight of silver bromide found and the sum of the weights of silver and bromine used affords additional confirmation of the freedom of the silver ordinarily used in this class of work from both metallic and gaseous impurities.

Antimony.—Muzaffar¹⁵ has compared purified metallic antimony from stibnite from different sources with potassium bromate, and finds marked differences in atomic weight.

Source	Hungary	Borneo	Peru	Bolivia
At. wt. Sb	121.144	121.563	121.720	122.374

No. 72. (Celtium-Hafnium.)—Hevesy¹⁶ has published preliminary determinations of the atomic weight of element No. 72, in which the sulfate was converted to oxide by ignition.

¹⁴ Hönigschmid and Zintl, Ann., 433, 201 (1923).

¹⁵ Muzaffar, This Journal, **45**, 2009 (1923).

¹⁶ Hevesy, Ber., **56B**, 1503 (1923).

	Atomic Weig		
Wt. of sulfate G.	Wt. of oxide G.	Ratio oxide:sulfate	At. wt. No, 72
0.9327	0.5247	0.5629	174.2
1.9081	1.0755	.5636	174.8
		Av.	174.5

Since the preparation contained 5 to 6% of zirconium the atomic weight of No. 72 is apparently between 178.4 and 180.2.

Mercury.—Hönigschmid, Birckenbach and Steinheil¹⁷ have analyzed mercuric chloride and bromide prepared both from ordinary mercury and from metal which had been partially separated into isotopes by Brönsted and Hevesy. Ordinary mercury was treated with mercurous nitrate and distilled thrice in a vacuum. The separated mercury was distilled once. The halides were prepared by heating the metal in a current of dry chlorine, or nitrogen charged with bromine, and after resublimation in a current of the same gas were fused in a quartz weighing tube in a current of nitrogen. After solution of the halides in water the mercury was precipitated with hydrazine and the excess of hydrazine destroyed with hydrogen peroxide. Comparison of the solution with silver followed. Weights are corrected to vacuum. Cl = 35.457; Br = 79.916.

Atomic Weight of Mercury						
	Ordinary	MERCURY				
Wt. of HgCl ₂ G.	Wt. of Ag G.	Ratio HgCl2:2Ag	At. wt. Hg			
2.13713	1.69819	1.25848	200.61			
3.85034	3.05962	1.25844	200.61			
1,68604	1.33978	1.25845	200.61			
4.51718	3.58910	1.25858	200.64			
4.45234	3,53761	1.25857	200.64			
1.75819	1.39716	1.25840	200.60			
5.21426	4.14336	1.25846	200.61			
3.26948	2.59801	1.25846	200.61			
5.56053	4.41849	1.25847	200.61			
3.40487	2.70561	1.25845	200.61			
6.63476	5.27207	1.25847	200.61			
5.88367	4.67531	1.25846	200.61			
	Av.	1.25847	200.61			
	LIGHT F	RACTION				
4.29696	3.41502	1.258253	200.566			
4.34231	3.45108	1.258246	200.565			
3.84344	3.05453	1.258275	200.571			
	Av.	1.258258	200.567			
HEAVY FRACTION						
4.01298	3.18853	1.258567	200.634			
2.90295	2.30650	1.258595	200.640			
4.34190	3.44981	1.258591	200.637			

¹⁷ Hönigschmid, Birckenbach and Steinheil, Ber., **56B**, 1212 (1923). Hönigschmid and Birckenbach, Ber., **56B**, 1219 (1923).

1.258584

200.637

Av.

ORDINARY MERCURY					
Wt. of HgBr ₂	Wt. of Ag G.	Ratio HgBr2: 2Ag	At. wt, Hg		
G. 3.97757	2,38097	1.67057	200.61		
5.05162	3,02390	1.67057	200.01 200.61		
3.01322	1,80372	1.67056	200.01 200.61		
4.42861	2,65096	1.67057	200.01 200.61		
5.17631	3,09854	1.67056	200.01 200.61		
	2,35515	1.67052	200.01 200.60		
3.93433					
3.14061	1.87997	1.67056	200.61		
6.41435	3.83957	1.67059	200.61		
	Av.	1.67056	200.61		
	LIGHT	FRACTION			
2.98314	1.78600	1.670291	200.550		
2.65486	1.58936	1.670396	200.573		
3.51638	2, 10515	1.670370	200.567		
3.13551	1,87718	1.670330	200.558		
	Av.	1.670347	200.562		
	Heavy	FRACTION			
5.82553	3.48708	1.670604	200.618		
7.87234	4.71220	1.670629	200.623		
6.73210	4.02945	1.670724	200.643		
5.74331	3.43775	1.670660	200.629		
	Av.	1.670654	200.628		

The value already found by Easley, and by Baker for ordinary mercury is thus confirmed.

The average values for the light fraction, 200.564, differs from the average for the heavy fraction, 200.632, by 0.068 unit, while the difference in atomic weight calculated from the densities found by Brönsted and Hevesy amounts to the same quantity.

Lead.—Hönigschmid and Steinheil¹⁸ have compared the most and least volatile fractions of lead chloride obtained by Brönsted and Hevesy in

LIGHT FRACTION						
Wt. of PbCl ₂ G.	Wt. of Ag G.	Ratio PbCl2:2Ag G.	At. wt. Pb	Wt. of AgCl G.	Ratio PbCl2:2AgCl	At. wt. Pb
3.11854	2.41913	1.289117	207.226	3.21414	0.970257	207.233
3.03220	2.35217	1.289108	207.224	3.12519	.970245	207.230
3.66959	2.84657	1.289127	207.228	3.78213	.970244	207.230
4.90405	3.80412	1.289142	207.231	5.05435	.970263	207.235
4.07526	3.16125	1.289130	207.229	4.20018	.970258	207.234
	Av.	1.289125	207.227		.970253	207.232
		HEAVY	FRACTIO	NC		
3.70960	2.87761	1.289126	207.227	3.82319	.970289	207.243
3.94052	3.05677	1.289113	207.224	4.06123	.970278	207.239
4.41267	3.42293	1.289150	207.233	4.54786	.970274	207.238
4.23655	3.28626	1.289171	207.237	3.66622	.970301	207.246
6.22552	4.82914	1.289158	207.235	6.41624	.970276	207.339
	Av.	1.289144	207.231		.970284	207.241

¹⁸ Hönigschmid and Steinheil, Ber., 56B, 1831 (1923).

a fractional distillation of this substance. After purification the chloride was sublimed in a current of hydrogen chloride into a quartz weighing tube. Solution and comparison with silver followed the weighing, and finally the silver chloride was determined. Weights are corrected to vacuum. C1 = 35.457.

The difference between the two fractions is not only less than was expected but is within the limit of error of the experiment. Furthermore when all the values for the atomic weight of lead are averaged the result, 207.23, is perceptibly higher than any value found by the numerous recent investigators on this subject.

Atkinson¹⁹ claims to have separated lead by fractional crystallization into material of higher (11.345) and lower (11.313) density than that of ordinary lead (11.328).

Radioactive Lead.—Hönigschmid and Birckenbach²⁰ and Richards and Putzeys²¹ have determined the atomic weight of lead obtained from minerals associated with the deposit of uraninite in the Belgian Congo. Weights are corrected to vacuum. Cl = 35.458.

Atomic Weight of Lead					
	Hönigschmid and				
	Congo	Lead			
Wt. of PbCl ₂ G.	Wt. of Ag G.	Ratio PbCl ₂ :2Ag	At. wt. Pb		
6.53232	5.08881	1.283664	206.047		
5.79082	4.51117	1.283663	206.047		
8.51297	6.63180	1.283660	206.045		
	Av.	1.283662	206.046		
	Richards and	d Putzeys			
	Ordinary	LEAD			
5.70194	4,42331	1.28906	207.21		
4.65819	3.61405	1.28891	207.18		
4.87664	3.78388	1.28879	207.15		
	Av.	1.28892	207.18		
	Congo Lead, F	RELIMINARY			
3.38089	2.63325	1.28392	206.10		
4.21302	3.28093	1.28409	206 , 14		
	Av.	1.28400	206.12		
Congo Lead, Final					
3,66388	2.85263	1.28439	206.20		
4.30262	3.34997	1.28438	206.20		
	Av.	1.28439	206.20		

Moles and Clavera²² recalculate certain fundamental atomic weights from earlier measurements.

- ¹⁹ Atkinson, Nature, **112**, 282 (1923).
- ²⁰ Hönigschmid and Birckenbach, Ber., 56B, 1837 (1923).
- ²¹ Richards and Putzeys, THIS JOURNAL, 45, 2954 (1923).
- ²² Moles and Clavera, Anales soc. españ. fís. quím., 20, 550 (1922).

Recent evidence concerning the isotopic character of the following elements has been given by Aston.²³

	Isotopic	CHARACTER	of Elements	
Element	Atomic number	Atomic weight	Minimum number of isotop es	Mass number in order of intensity
Sc	21	45.1	1	45
Ti	22	48.1	1	48
V	23	51.0	1	51
Ċr	24	52.0	1	52
Mn	25	54.93	1	55
Co	27	58.94	1	59
Cu	29	63.57	2	6 3 , 65
Ga	31	69.72	2	69,71
Ge	32	72.42	3	74, 72, 70
Sr	38	87.63	1	88
Y	39	88.9	1	89
Ag	47	107.88	2	107, 109
Sb	51	121.77	2	121, 123
	0 T	О т		

T. JEFFERSON COOLIDGE, JR., CHEMICAL LABORATORY OF HARVARD UNIVERSITY CAMBRIDGE 38, MASSACHUSETTS

[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF THE UNIVERSITY OF NEBRASKA]

THE ACTION OF ARSENIC TRIOXIDE IN WATER SOLUTION ON CERTAIN METALLIC HYDROXIDES

BY LEROY GRANVILLE STORY AND ERNEST ANDERSON

RECEIVED JULY 16, 1923

Many arsenites have been described in the literature,¹ some of which have a complex composition. Frequently these substances were prepared under conditions that might easily give rise to mixtures. Indeed, the analyses of the products often do not agree with the formulas assigned to them. Biltz² studied the action of ferric hydroxide, aluminum hydroxide and silicic acid separately on water solutions of arsenic trioxide and found that no compounds were formed but adsorption phenomena occurred. The results in the case of ferric hydroxide could be represented by an equation. The amounts of arsenic trioxide adsorbed by aluminum hydroxide and silicic acid were very small and practically independent of the concentration of the arsenic trioxide in solution. These facts led to the investigation of the action of arsenic trioxide in water solution on certain metallic hydroxides in order to determine the composition of the products formed.

²³ Aston, Nature, 110, 732 (1922); 112, 449 (1923).

¹ Stavenhagen, J. prakt. Chem., 51, 1 (1895). Reichard, Ber., 27, 1019 (1894), and 31, 2165 (1898).

² Biltz, Ber., 37, 3138 (1904).